
DRAFT

P R E L I M I N A R Y P R O O F S .
Unpublished Work c©2008 by Pearson Education, Inc. To be published by Pearson Pr entice Hall,
Pearson Education, Inc., Upper Saddle River, New Jersey. Al l rights reserved. Permission to use
this unpublished Work is granted to individuals registerin g through Melinda_Haggerty@prenhall.com
for the instructional purposes not exceeding one academic t erm or semester.

Chapter 18
Computational Semantics

“Then you should say what you mean,” the March Hare went on.
“I do,” Alice hastily replied; “at least–at least I mean whatI say–that’s the same thing,
you know.”
“Not the same thing a bit!” said the Hatter. “You might just aswell say that ‘I see what I
eat’ is the same thing as ‘I eat what I see’!”

Lewis Carroll,Alice in Wonderland

This chapter presents a principled computational approachto the problem ofseman-
tic analysis the process whereby meaning representations of the kind discussed in theSemantic analysis

last chapter are composed for linguistic expressions. The automated creation of ac-
curate and expressive meaning representations necessarily involves a wide range of
knowledge-sources and inference techniques. Among the sources of knowledge that
are typically involved are the meanings of words, the conventional meanings associ-
ated with grammatical constructions, knowledge about the structure of the discourse,
common-sense knowledge about the topic at hand and knowledge about the state of
affairs in which the discourse is occurring.

The focus of this chapter is a kind ofsyntax-driven semantic analysisthat isSyntax-driven
semantic analysis

fairly modest in its scope. In this approach, meaning representations are assigned to
sentences based solely on knowledge gleaned from the lexicon and the grammar. When
we refer to an expression’s meaning, or meaning representation, we have in mind a
representation that is both context independent and free ofinference. Representations
of this type correspond to the traditional notion of literalmeaning discussed in the
previous chapter.

There are two motivations for proceeding along these lines:there are application
domains, including question answering, where such primitive representations are suf-
ficient to produce useful results, and these impoverished representations can serve as
useful inputs to subsequent processes that can produce richer, more complete, meaning
representations. Chs. 21 and 24 will discuss how these meaning representations can be
used in processing extended discourses and dialogs.

18.1 Syntax-Driven Semantic Analysis

The approach detailed in this section is based on theprinciple of compositionality.Principle of
compositionality

The key idea behind this approach is that the meaning of a sentence can be constructed
from the meanings of its parts. When interpreted superficially this principle is some-
what less than useful. We know that sentences are composed ofwords, and that words

DRAFT

590 Chapter 18. Computational Semantics

Syntactic Analysis Semantic AnalysisInputs

Syntactic Structures

Meaning
Representations

Figure 18.1 A simple pipeline approach to semantic analysis.

are the primary carriers of meaning in language. It would seem then that all this prin-
ciple tells us is that we should compose the meaning representation for sentences from
the meanings of the words that make them up.

Fortunately, the Mad Hatter has provided us with a hint as to how to make this
principle useful. The meaning of a sentence is not based solely on the words that make
it up, but also on the ordering and grouping of words, and on the relations among the
words in the sentence. This is just another way of saying thatthe meaning of a sentence
is partially based on its syntactic structure. Therefore, in syntax-driven semantic analy-
sis, the composition of meaning representations is guided by the syntacticcomponents
andrelationsprovided by the kind of grammars discussed in Ch. 12.

Let’s begin by assuming that the syntactic analysis of an input sentence serves as
the input to a semantic analyzer. Figure 18.1 illustrates anobvious pipeline-oriented
approach that follows directly from this assumption. An input is first passed through
a parser to derive its syntactic analysis. This analysis is then passed as input to ase-
mantic analyzerto produce a meaning representation. Note that although this diagramSemantic analyzer

shows a parse tree as input, other syntactic representations such as flat chunks, feature
structures, or dependency structures can also be used. For the remainder of this chapter
we’ll assume tree-like inputs.

Before moving on, we should touch on the role of ambiguity in this story. As we’ve
seen, ambiguous representations can arise from numerous sources including compet-
ing syntactic analyses, ambiguous lexical items, competing anaphoric references and
as we’ll see later in this chapter ambiguous quantifier scopes. In the syntax-driven ap-
proach presented here, we assume that syntactic, lexical and anaphoric ambiguities are
not a problem. That is, we’ll assume that some larger system is capable of iterating
through the possible ambiguous interpretations and passing them individually to the
kind of semantic analyzer described here.

Let’s consider how such an analysis might proceed with the following example:

(18.1) Franco likes Frasca.

Fig. 18.2 shows a simplified parse tree (lacking any feature attachments), along with a
plausible meaning representation for this example. As suggested by the dashed arrows,
a semantic analyzer given this tree as input might fruitfully proceed by first retrieving a

DRAFT

Section 18.2. Semantic Augmentations to CFG Rules 591

S ∃eLiking(e)∧Liker(e,Franco)∧Liked(e,Frasca)

NP VP

NP

ProperNoun Verb ProperNoun

Franco likes Frasca

Figure 18.2 Parse tree for the sentenceFranco likes Frasca.

skeletal meaning representation from the subtree corresponding to the verblikes. The
analyzer would then retrieve or compose meaning representations corresponding to the
two noun phrases in the sentence. Then using the representation acquired from the
verb as a kind of template, the noun phrase meaning representations would be used to
bind the appropriate variables in the verb representation,thus producing the meaning
representation for the sentence as a whole.

Unfortunately, there are a number of serious difficulties with this simplified story.
As described, the function used to interpret the tree in Fig.18.2 must know, among
other things, that it is the verb that carries the template upon which the final represen-
tation is based, where its corresponding arguments are and which argument fills which
role in the verb’s meaning representation. In other words, it requires a good deal of
specific knowledge aboutthis particular example and its parse treeto create the re-
quired meaning representation. Given that there are an infinite number of such trees
for any reasonable grammar, any approach based on one semantic function for every
possible tree is in serious trouble.

Fortunately, we have faced this problem before. Languages are not defined by enu-
merating the strings or trees that are permitted, but ratherby specifying finite devices
that are capable of generating the desired set of outputs. Itwould seem, therefore, that
the right place for semantic knowledge in a syntax-directedapproach is with the finite
set of devices that are used to generate trees in the first place: the grammar rules and
the lexical entries. This is known as therule-to-rule hypothesis(Bach, 1976).Rule-to-rule

hypothesis

Designing an analyzer based on this approach brings us back to the notion of parts
and what it means for them to have meanings. The following section is an attempt to
answer the following two questions:

• What does it mean for a syntactic constituent to have a meaning?

• What characteristics do these meanings have to have so that they can be com-
posed into larger meanings?

18.2 Semantic Augmentations to CFG Rules

In keeping with the approach used in Ch. 16, we will begin by augmenting our context-
free grammar rules withsemantic attachments. These attachments are instructionsSemantic

attachments
that specify how to compute the meaning representation of a construction from the
meanings of its constituent parts. Abstractly, our augmented rules have the following

DRAFT

592 Chapter 18. Computational Semantics

structure:
A → α1 . . .αn { f (α j .sem, . . . ,αk.sem)}

The semantic attachment to the basic context-free rule is shown in the{. . .} to
the right of the rule’s syntactic constituents. This notation states that the meaning
representation assigned to the constructionA, which we will denote asA.sem, can be
computed by running the functionf on some subset of the semantic attachments ofA’s
constituents.

There are myriad ways to instantiate this style of rule-to-rule approach. Our seman-
tic attachments could, for example, take the form of arbitrary programming language
fragments. A meaning representation for a given derivationcould then be constructed
by passing the appropriate fragments to an interpreter in a bottom-up fashion and then
storing the resulting representations as the value for the associated non-terminals.1

Such an approach would allow us to create any meaning representation we might like.
Unfortunately, the unrestricted power of this approach would also allow us to create
representations that have no correspondence at all with thekind of formal logical ex-
pressions described in the last chapter. Moreover, this approach would provide us with
very little guidance as to how to go about designing the semantic attachments to our
grammar rules.

For these reasons, more principled approaches are typically used to instantiate the
rule-to-rule approach. We’ll introduce two such constrained approaches in this chapter.
The first makes direct use ofFOL and theλ -calculus notation introduced in Ch. 17. This
approach essentially uses a logical notation to guide the creation of logical forms in a
principled fashion. The second approach, described later in Sec. 18.4 is based on the
feature-structure and unification formalisms introduced in Ch. 16.

To get started, let’s take a look at a very basic example alongwith a simplified
target semantic representation.

(18.2) Maharani closed.

Closed(Maharani)
Let’s work our way bottom-up through the rules involved in this example’s deriva-

tion. Starting with the proper noun, the simplest possible approach is to assign a unique
FOL constant to it, as in the following.

ProperNoun→ Maharani {Maharani}

The non-branchingNP rule that dominates this one doesn’t add anything semantically,
so we’ll just copy the semantics of theProperNounup unchanged to the NP.

NP → ProperNoun {ProperNoun.sem}

Moving on to theVP, the semantic attachment for the verb needs to provide the
name of the predicate, specify its arity and provide the means to incorporate an ar-
gument once it’s discovered. We’ll make use of aλ -expression to accomplish these
tasks.

1 Those familiar with compiler tools such as YACC and Bison will recognize this approach.

DRAFT

Section 18.2. Semantic Augmentations to CFG Rules 593

VP → Verb {Verb.sem}

Verb→ closed {λx.Closed(x)}
This attachment stipulates that the verbclosedhas a unary predicateClosedas its rep-
resentation. Theλ -notation gives us the means to leave unspecified, as thex variable,
the entity that is closing. As with our earlierNP rule, the intransitiveVP rule that
dominates the verb simply copies upward the semantics of theverb below it.

Proceeding upward, it remains for the semantic attachment for theS rule to bring
things together by inserting the semantic representation of the subjectNP as the first
argument to the predicate.

S→ NP VP {VP.sem(NP.sem)}

Since the value ofVP.semis aλ -expression and the value ofNP.semis a simply aFOL

constant, we can create our desired final meaning representation by usingλ -reduction
to apply theVP.semto theNP.sem.

λx.Closed(x)(Maharani)

Closed(Maharani)

This example illustrates a general pattern which will repeat itself throughout this
chapter. The semantic attachments to our grammar rules willconsist primarily ofλ -
reductions, where one element of an attachment serves as a functor and the rest serve
as arguments to it. As we’ll see, the real work resides in the lexicon where the bulk of
the meaning representations are introduced.

Although this example illustrates the basic approach, the full story is a bit more
complex. Let’s begin by replacing our earlier target representation with one that is more
in keeping with the neo-Davidsonian representations introduced in the last chapter, and
by considering an example with a more complex noun phrase as its subject.

(18.3) Every restaurant closed.

The target representation for this example should be the following.

∀xRestaurant(x) ⇒ (∃eClosed(e)∧ClosedThing(e,x)

Clearly, the semantic contribution of the subject noun phrase in this example is
much more extensive than in our previous one. In our earlier example, theFOL constant
representing the subject was simply plugged into the correct place inClosedpredicate
via a singleλ -reduction. Here the final result involves a complex intertwining of the
content provided by theNPand the content provided by theVP. We’ll have to do some
work if we want rely onλ -reduction to produce what we want here.

The first step is to determine exactly what we’d like the meaning representation
of Every restaurantto be. Let’s start by assuming thatEveryinvokes the∀ quantifier

DRAFT

594 Chapter 18. Computational Semantics

and thatrestaurantspecifies the category of concept that we’re quantifying over, which
we’ll call the restriction of the noun phrase. Putting these together we might expectRestriction

the meaning representation to be something like∀xRestaurant(x). Although this is a
valid FOL formula its not a terribly useful one, since it says that everything is a restau-
rant. What’s missing from it is the notion that noun phrases like every restaurantare
normally embedded in expressions that stipulate somethingabout the universally quan-
tified variable. That is, we’re probably trying tosay somethingabout all restaurants.
This notion is traditionally referred to as theNP’s nuclear scope. In this case, theNuclear scope

nuclear scope of this noun phrase isclosed.
We can capture these notions in our target representation byadding a dummy pred-

icate,Q, representing the scope and attaching that predicate to therestriction predicate
with an ⇒ logical connective, leaving us with the following expression:

∀xRestaurant(x)⇒ Q(x)

Ultimately, what we need to do to make this expression meaningful is to replaceQ with
the logical expression corresponding to the nuclear scope.Fortunately, theλ -calculus
can come to our rescue again. All we need to do is to permitλ -variables to range over
FOL predicates as well as terms. The following expression captures exactly what we
need.

λQ.∀xRestaurant(x) ⇒ Q(x)

The following series of grammar rules with their semantic attachments serve to
produce this desired meaning representation for this kind of NP.

NP →Det Nominal {Det.Sem(Nominal.Sem)}

Det → every {λP.λQ.∀xP(x) ⇒ Q(x)}

Nominal→ Noun {Noun.sem}

Noun→ restaurant {λx.Restaurant(x)}

The critical step in this sequence involves theλ -reduction in theNP rule. This rule
applies theλ -expression attached to theDet to the semantic attachment of theNominal,
which is itself aλ -expression. The following are the intermediate steps in this process.

λP.λQ.∀xP(x) ⇒ Q(x)(λx.Restaurant(x))

λQ.∀xλx.Restaurant(x)(x)⇒ Q(x)

λQ.∀x Restaurant(x)⇒ Q(x)

DRAFT

Section 18.2. Semantic Augmentations to CFG Rules 595

The first expression is the expansion of theDet.Sem(Nominal.Sem) semantic attach-
ment to theNP rule. The second formula is the result of thisλ -reduction. Note that
this second formula has aλ -application embedded in it. Reducing this expression in
place gives us the final form.

Having revised our semantic attachment for the subject nounphrase portion of our
example, let’s move to theS andVP andVerb rules to see how they need to change
to accommodate these revisions. Let’s start with theS rule and work our way down.
Since the meaning of the subjectNP is now aλ -expression, it makes sense to consider
it as a functor to be called with the meaning of theVP as its argument. The following
attachment accomplishes this.

S→ NP VP {NP.sem(VP.sem)}

Note that we’ve flipped the role of functor and argument from our original proposal for
thisSrule.

The last attachment to revisit is the one for the verbclose. We need to update it
to provide a proper event-oriented representation and to make sure that it is interfaces
well with the newSandNP rules. The following attachment accomplishes both goals.

Verb→ close {λx.∃eClosed(e)∧ClosedThing(e,x)}

This attachment is passed unchanged to theVPconstituent via the intransitiveVP rule.
It is then combined with the meaning representation ofEvery restaurantas dictated by
the semantic attachment for theSgiven earlier. The following expressions illustrate the
intermediate steps in this process.

λQ.∀xRestaurant(x)⇒ Q(x)(λy.∃eClosed(e)∧ClosedThing(e,y))

∀xRestaurant(x) ⇒ λy.∃eClosed(e)∧ClosedThing(e,y)(x)

∀xRestaurant(x) ⇒ ∃eClosed(e)∧ClosedThing(e,x)

These steps achieve our goal of getting theVP’s meaning representation spliced in as
the nuclear scope in theNP’s representation.

As is always the case with any kind of grammar engineering effort we now need to
make sure that our earlier simpler examples still work. One area that we need to revisit
is our representation of proper nouns. Let’s consider them in the context of our earlier
example.

(18.4) Maharani closed.

TheSrule now expects the subjectNP’s semantic attachment to be a functor applied
to the semantics of theVP, therefore our earlier representation of proper nouns asFOL

constants won’t do. Fortunately, we can once again exploit the flexibility of theλ -
calculus to accomplish what we need with the following expression.

λx.x(Maharani)

DRAFT

596 Chapter 18. Computational Semantics

This trick turns a simpleFOL constant into aλ -expression, which when reduced serves
to inject the constant into a larger expression. You should work through our original
example with all of the new semantic rules to make sure that you can come up with the
following intended representation:

∃eClosed(e)∧ClosedThing(Maharani)

As one final exercise, let’s see how this approach extends to an expression involving
a transitive verb phrase, as in the following.

(18.5) Matthew opened a restaurant.

If we’ve done things correctly we ought to be able to specify the semantic attachments
for transitive verb phrases, for the verbopenand for the determinera, while leaving
the rest of our rules alone.

Let’s start by modeling the semantics for the determinera on our earlier attachment
for every.

Det → a {λP.λQ.∃xP(x)∧Q(x)}

This rule differs from the attachment forevery in two ways. First we’re using the
existential quantifier∃ to capture the semantics ofa. And second we’ve replaced the
⇒ operator with a logical∧. The overall framework remains the same with theλ -
variablesP andQ standing in for the restriction and nuclear scopes to be filled in later.
With this addition our existingNP rule will create the appropriate representation fora
restaurant:

λQ.∃xRestaurant(x)∧Q(x)

Next let’s move on to theVerbandVP rules. There are two arguments that need to
be incorporated into the underlying meaning representation. One argument is available
at the level of the transitiveVP rule, and the second at theS rule. Let’s assume the
following form for theVP semantic attachment.

VP → Verb NP {Verb.Sem(NP.Sem)}

This attachment assumes that the verb’s semantic attachment will be applied as a func-
tor to the semantics of its noun phrase argument. And let’s assume for now that the
representations we developed earlier for quantified noun phrases and proper nouns will
remain unchanged. With these assumptions in mind, the following attachment for the
verbopenedwill do what we want.

Verb→ opened
{λw.λz.w(λx.∃eOpened(e)∧Opener(e,z)∧OpenedThing(e,x))}

With this attachment in place, the transitiveVP rule will incorporate the variable
standing fora restaurantas the second argument toopened, incorporate the entire
expression representing theopeningevent as the nuclear scope ofa restaurantand

DRAFT

Section 18.2. Semantic Augmentations to CFG Rules 597

Grammar Rule Semantic Attachment
S→ NP VP {NP.sem(VP.sem)}
NP → Det Nominal {Det.sem(Nominal.sem)}
NP → ProperNoun {ProperNoun.sem}
Nominal→ Noun {Noun.sem}
VP → Verb {Verb.sem}
VP → Verb NP {Verb.sem(NP.sem)}

Det → every {λP.λQ.∀xP(x) ⇒ Q(x)}
Det → a {λP.λQ.∃xP(x)∧Q(x)}
Noun→ restaurant {λ r.Restaurant(r)}
ProperNoun→ Matthew {λm.m(Matthew)}
ProperNoun→ Franco {λ f . f (Franco)}
ProperNoun→ Frasca {λ f . f (Frasca)}
Verb→ closed {λx.∃eClosed(e)∧ClosedThing(e,x)}
Verb→ opened {λw.λz.w(λx.∃eOpened(e)∧Opener(e,z)

∧Opened(e,x))}
Figure 18.3 Semantic attachments for a fragment of our English grammar and lexicon.

finally produce aλ -expression suitable for use with ourS rule. As with the previous
example you should walk through this example step by step to make sure that you
arrive at our intended meaning representation.

∃xRestaurant(x)∧∃eOpened(e)∧Opener(e,Matthew)∧OpenedThing(e,x)

The list of semantic attachments which we’ve developed for this small grammar
fragment is shown in Fig. 18.2. Sec. 18.5 expands the coverage of this fragment to
some of the more important constructions in English.

In walking through these examples, we have introduced threetechniques that in-
stantiate the rule-to-rule approach to semantic analysis introduced at the beginning of
this section:

1. Associating complex, function-like,λ -expressions with lexical items

2. Copying of semantic values from children to parents in non-branching rules

3. Function-like application of the semantics of one of the children of a rule to the
semantics of the other children of the rule viaλ -reduction.

These techniques serve to illustrate a general division of labor that guides the de-
sign of semantic attachments in this compositional framework. In general, it is the
lexical rules that introduce quantifiers, predicates and terms into our meaning repre-
sentations. The semantic attachments for grammar rules putthese elements together in
the right ways, but do not in general introduce new elements into the representations
being created.

DRAFT

598 Chapter 18. Computational Semantics

18.3 Quantifier Scope Ambiguity and Underspecification

The grammar fragment developed in the last section appears to be sufficient to handle
examples like the following that contain two or more quantified noun phrases.

(18.6) Every restaurant has a menu.

Systematically applying the rules given in Fig. 18.2 to thisexample produces the
following perfectly reasonable meaning representation.

∀x Restaurant(x)⇒
∃y Menu(y)∧∃eHaving(e)∧Haver(e,x)∧Had(e,y)

This formula more or less corresponds to the common sense notion that all restaurants
have menus.

Unfortunately, this isn’t the only possible interpretation for this example. The fol-
lowing is also possible.

∃y Menu(y)∧∀x Restaurant(x)⇒
∃e Having(e)∧Haver(e,x)∧Had(e,y)

This formula asserts that there is one menu out there in the world and all restaurants
share it. Now from a common sense point of view this seems pretty unlikely, but
remember that our semantic analyzer only has access to the semantic attachments in
the grammar and the lexicon in producing meaning representations. Of course, world
knowledge and contextual information can be used to select between these two read-
ings, but only if we are able to produce both.

This example illustrates that expressions containing quantified terms can give rise
to ambiguous representations even in the absence of syntactic, lexical or anaphoric
ambiguities. This is known as the problem ofquantifier scoping. The differenceQuantifer scoping

between the two interpretations given above arises from which of the two quantified
variables has the outer scope.

The approach outlined in the last section can not handle thisphenomena. To fix this
we’ll need the following capabilities.

• The ability to efficiently createunderspecifiedrepresentations that embody all
possible readings without explicitly enumerating them
• A means to generate, or extract, all of the possible readingsfrom this represen-

tation
• And the ability to choose among the possible readings

The following sections will outline approaches to the first two problems. The solu-
tion to the last, most important problem, requires the use ofcontext and world knowl-
edge and unfortunately remains a largely unsolved problem.

18.3.1 Store and Retrieve Approaches

One way to address the quantifier scope problem is to add a new notation to our existing
semantic attachments to facilitate the compositional creation of the desired meaning

DRAFT

Section 18.3. Quantifier Scope Ambiguity and Underspecification 599

representations. In this case, we’ll introduce the notion of a complex-termthat permitsComplex-term

FOL expressions like∀x Restaurant(x) to appear in places where we would normally
only allow FOL terms to appear. Formally, a complex-term will be an expression with
the following three-part structure:

〈Quantifier variable formula〉
Applying this notation to our current example, we would arrive at the following

representation:

∃e Having(e)
∧Haver(e,〈∀x Restaurant(x)〉)
∧Had(e,〈∃y Menu(y)〉)

The intent of the this approach is to capture the basic predicate argument structure of
an expression, while remaining agnostic about where the various quantifiers will end
up in the final representation.

As was the case withλ -expressions, this notational device is only useful if we can
provide an algorithm to convert it back into an ordinaryFOL expression. This can be
accomplished by rewriting any predicate containing a complex-term according to the
following schema:

P(〈Quantifier variable formula〉)
=⇒
Quantifier variable formula Connective P(variable)

In other words, the complex-term:

1. is extracted from the predicate in which it appears,
2. is replaced by the specified variable,
3. and has its variable, quantifier, and formula prepended tothe new expression

through the use of an appropriate connective.

The connective that is used to attach the extracted formula to the front of the new
expression depends on the type of the quantifier being used:∧ is used with∃, and ⇒
is used with∀.

How does this scheme help with our ambiguity problem? Note that our new repre-
sentation contains two complex terms. The order in which we process them determines
which of the two readings we end up with. Let’s consider the case where we proceed
left-to-right through the expression transforming the complex terms as we find them.
In this case, we encounterEvery restaurantfirst; transforming it yields the following
expression.

∀xRestaurant(x)⇒ ∃e Having(e)∧Haver(e,x)∧Had(e,〈∃yMenu(y)〉)

Proceeding onward we next encountera menu. Transforming this complex term yields
the following final form which corresponds to the non-intuitive reading that we couldn’t
get with our earlier method.

∃yMenu(y)∧∀xRestaurant(x)⇒ ∃e Having(e)∧Haver(e,x)∧Had(e,y)

DRAFT

600 Chapter 18. Computational Semantics

To get the more common-sense reading that we had earlier all we have to is pull
out the complex-terms in the other order; firsta menuand thenevery restaurant.

This approach to quantifier scope provides solutions to the two of the desiderata
given earlier: complex terms provide a compact underspecified representation of all
the possible quantifier-based ambiguous readings, and the method for transforming
them provides a deterministic method for eliminating complex terms and thus retriev-
ing valid FOL formulas. And by altering the ordering by which complex terms are
eliminated we can recover all the possible readings. Of course, sentences withN quan-
tifiers will haveO(N!) different quantifier-based readings.

In practice, most systems employ an ad hoc set of heuristic preference rules that can
be used to generate preferred forms in order of their overalllikelihood. In cases where
no preference rules apply, a left-to-right quantifier ordering that mirrors the surface
order of the quantifiers is used. Domain specific knowledge can then be used to either
accept a quantified formula, or reject it and request anotherformula. Alshawi (1992)
presents a comprehensive approach to generating plausiblequantifier scopings.

18.4 Unification-Based Approaches to Semantic Analysis

As mentioned in Sec. 18.2, feature structures and the unification operator provide an
effective way to implement syntax-driven semantic analysis. Recall that in Ch. 16 we
paired complex feature structures with individual context-free grammar rules to encode
syntactic constraints such as number agreement and subcategorization; constraints that
were awkward or in some cases impossible to convey directly using context-free gram-
mars. For example, the following rule was used to capture agreement constraints on
English noun phrases.

NP → Det Nominal

〈Det AGREEMENT〉 = 〈NominalAGREEMENT〉
〈NP AGREEMENT〉 = 〈NominalAGREEMENT〉

Rules such as this one serve two functions at the same time: they insure that the gram-
mar rejects expressions that violate this constraint, and more importantly for our current
topic, they create complex structures that can be associated with parts of grammatical
derivations. The following structure, for example, results from the application of the
above rule to a singular noun phrase.

[

AGREEMENT
[

NUMBER sg
]]

We’ll use this latter capability to compose meaning representations and associate them
with constituents in parse.

In this unification-based approach, ourFOL representations andλ -based semantic
attachments are replaced by complex feature structures andunification equations. To
see how this works, let’s walk through a series of examples similar to those discussed

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 601

earlier in Sec. 18.2. Let’s start with a simple intransitivesentence with a proper noun
as it’s subject.

(18.7) Rhumba closed

Using an event-oriented approach, the meaning representation for this sentence should
be something like the following.

∃e Closing(e)∧Closed(e,Rhumba)

Our first task will be to show that we can encode representations like this within the
feature structure framework. The most straightforward wayto approach this task is to
simply follow the BNF-style definition ofFOL statements given in Ch. 17. The rel-
evant elements of this definition stipulate thatFOL formulas come in three varieties:
atomic formulas consisting of predicates with the appropriate number of term argu-
ments, formulas conjoined with other formulas via the∧, ∨ and ⇒ operators, and
finally quantified formulas which consist of a quantifier, variables and a formula. Us-
ing this definition as a guide, we can capture thisFOL expression with the following
feature structure.

QUANT ∃
VAR 1

FORMULA

OP AND

FORMULA1

[

PRED CLOSING

ARG0 1

]

FORMULA2

PRED CLOSED

ARG0 1

ARG1 RHUMBA

Fig. 18.4 shows this expression using the DAG-style notation introduced in Ch. 16.
This figure reveals the way that variables are handled. Instead of introducing explicit
FOL variables, we’ll use the path-based feature-sharing capability of feature structures
to accomplish the same goal. In this example, the event variable e is captured by the
three paths leading to the same shared node.

Our next step is to associate unification equations with the grammar rules involved
in this example’s derivation. Let’s start at the top with theSrule.

S→ NP VP

〈SSEM〉 = 〈NP SEM〉
〈VP ARG0〉 = 〈NP INDEXVAR〉
〈NP SCOPE〉 = 〈VP SEM〉

The first line simply equates the meaning representation of theNP (encoded under the
SEM feature) with our top-levelS. The purpose of the second equation is to assign
the subjectNP to the appropriate role inside theVP’s meaning representation. More
concretely, it fills the appropriate role in theVP’s semantic representation by unifying
theARG0 feature with a path that leads to a representation of the semantics of theNP.

DRAFT

602 Chapter 18. Computational Semantics

Rhumba

Closed

Closing

∃ ∧Quant
Var

Formula

Formula2

Op

Formula1

Pred

Arg1

Arg0

Pred

Arg0

Figure 18.4 A directed graph notation for semantic feature structures.

Finally, it unifies theSCOPEfeature in theNP’s meaning representation with a pointer
to the VP’s meaning representation. As we’ll see, this is a somewhat convoluted way
to bring the representation of an event up to where it belongsin the representation. The
motivation for this apparatus should become clear in the ensuing discussion where we
consider quantified noun phrases.

Carrying on, let’s consider the attachments for theNPandProperNounparts of this
derivation.

NP → ProperNoun

〈NP SEM〉 = 〈ProperNounSEM〉
〈NP SCOPE〉 = 〈ProperNounSCOPE〉
〈NP INDEXVAR〉 = 〈ProperNounINDEXVAR〉

ProperNoun→ Rhumba

〈ProperNounSEM PRED〉 = RHUMBA

〈ProperNounINDEXVAR〉 = 〈ProperNounSEM PRED〉
As we saw earlier, there isn’t much to the semantics of propernouns in this approach.
Here we’re just introducing a constant and providing an index variable to point at that
constant.

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 603

Next, let’s move on to the semantic attachments for theVP andVerbrules.

VP → Verb

〈VP SEM〉 = 〈 VerbSEM〉
〈VP ARG0〉 = 〈 VerbARG0〉

Verb→ closed

〈VerbSEM QUANT〉 = ∃
〈VerbSEM FORMULA OP〉 = ∧
〈VerbSEM FORMULA FORMULA1 PRED〉 = CLOSING

〈VerbSEM FORMULA FORMULA1 ARG0〉 = 〈VerbSEM VAR〉
〈VerbSEM FORMULA FORMULA2 PRED〉 = CLOSED

〈VerbSEM FORMULA FORMULA2 ARG0〉= 〈VerbSEM VAR〉
〈VerbSEM FORMULA FORMULA2 ARG1〉 = 〈VerbARG0〉

The attachments for theVP rule parallel our earlier treatment of non-branching
grammatical rules. These unification equations are simply making the appropriate se-
mantic fragments of theVerb available at theVP level. In contrast, the unification
equations for theVerb introduce the bulk of the event representation that is at thecore
of this example. Specifically, it introduces the quantifier,event variable and predica-
tions that make up the body of the final expression. What wouldbe an event variable in
FOL is captured by the equations unifying theVerbSEM VAR path with the appropriate
arguments to the predicates in the body of the formula. Finally, it exposes the single
missing argument (the entity being closed) through the〈 VerbARG0〉 equation.

Taking a step back we can see that these equations serve the same basic functions
as theλ -expressions in Sec. 18.2; they provide the content of theFOL formula being
created, and they serve to expose and name the external arguments that will be filled in
later at higher levels in the grammar.

These last few rules also display the division of labor that we’ve seen several times
now; lexical rules introduce the bulk of the semantic content, while higher level gram-
matical rules assemble the pieces in the right way, rather than introducing content.

Of course, as was the case with theλ -based approach things get quite a bit more
complex when we look at expressions containing quantifiers.To see this, let’s work
through the following example.

(18.8) Every restaurant closed

Again, the meaning representation for this expression should be the following

∀xRestaurant(x)⇒ (∃eClosing(e)∧Closed(e,x))

which is captured by the following feature structure.

DRAFT

604 Chapter 18. Computational Semantics

QUANT ∀
VAR 1

FORMULA

OP ⇒

FORMULA1

[

PRED RESTAURANT

ARG0 1

]

FORMULA2

QUANT EXISTS

VAR 2

FORMULA

OP ∧

FORMULA1

[

PRED CLOSING

ARG0 2

]

FORMULA2

PRED CLOSED

ARG0 2

ARG1 1

As we saw earlier with theλ -based approach, the outer structure for expressions
like this comes largely from the subject noun phrase. Recallthat schematically this
semantic structure has the form∀xP(x) ⇒ Q(x) where theP expression is traditionally
referred to as therestrictorand is provided by the head noun andQ is referred to as the
nuclear scopeand comes from the verb phrase.

This structure gives rise to two distinct tasks for our semantic attachments: the
semantics of theVP semantics must be unified with the nuclear scope of the subject
noun phrase, and the variable representing that noun phrasemust be assigned to the
ARG1 role of theCLOSEDpredicate in the event structure. The following rules involved
in the derivation ofEvery restaurantaddress these two tasks

NP → Det Nominal

〈 NP SEM〉 = 〈Det SEM 〉
〈 NP SEM VAR 〉 = 〈 NP INDEXVAR 〉
〈 NP SEM FORMULA FORMULA1 〉 = 〈 NominalSEM 〉
〈 NP SEM FORMULA FORMULA2 〉 = 〈 NP SCOPE〉

Nominal→ Noun

〈 NominalSEM 〉 = 〈 NounSEM 〉
〈 NominalINDEXVAR 〉 = 〈 NounINDEXVAR 〉

Noun→ restaurant

〈 NounSEM PRED〉 = 〈 RESTAURANT 〉
〈 NounINDEXVAR 〉 = 〈 NounSEM PRED〉

Det → every

DRAFT

Section 18.4. Unification-Based Approaches to Semantic Analysis 605

〈 Det SEM QUANT 〉 = ∀
〈 Det SEM FORMULA OP〉 = ⇒

As one final exercise, let’s walk through an example with a transitive verb phrase.

(18.9) Franco opened a restaurant

This example has the following meaning representation.

∃x Restaurant(x)∧∃e Opening(e)∧Opener(e,Franco)∧Opened(e,x)

QUANT EXISTS

VAR 1

FORMULA

OP ∧

FORMULA1

[

PRED RESTAURANT

ARG1 1

]

FORMULA2

QUANT ∃
VAR 2

FORMULA

OP ∧

FORMULA1

[

PRED OPENING

ARG0 2

]

FORMULA2

PRED OPENER

ARG0 2

ARG1 FRANCO

FORMULA3

PRED OPENED

ARG0 2

ARG1 1

The only really new element that we need to address in this example is the following
transitiveVP rule.

VP → Verb NP

〈VP SEM〉 = 〈VerbSEM〉
〈NP SCOPE〉 = 〈VP SEM〉
〈VerbARG1〉 = 〈NP INDEXVAR〉

This rule has the two primary tasks that parallel those in ourS rule: it has to fill the
nuclear scope of the objectNP with the semantics of theVP, and it has to insert the
variable representing the object into to the right role in the VP’s meaning representa-
tion.

One obvious problem with the approach we just described is that it fails to generate
all the possible ambiguous representations arising from quantifier scope ambiguities.
Fortunately, the approaches to underspecification described earlier in Sec. 18.3 can be
adapted to the unification-based approach.

DRAFT

606 Chapter 18. Computational Semantics

18.5 Semantic Attachments for a Fragment of English

This section describes a set of semantic attachments for a small fragment of English, the
bulk of which are based on those used in the Core Language Engine (Alshawi, 1992).
As in the rest of this chapter, to keep the presentation simple, we omit the feature
structures associated with these rules when they are not needed. Remember that these
features are needed to ensure that the correct rules are applied in the correct situations.
Most importantly for this discussion, they are needed to ensure that the correct verb
entries are being employed based on their subcategorization feature structures.

18.5.1 Sentences

To this point, we’ve only dealt with simple declarative sentences. This section expands
our coverage to include the other sentence types first introduced in Ch. 12: imperatives,
yes-no-questions, and wh-questions. Let’s start by considering the following examples:

(18.10) Flight 487 serves lunch.
(18.11) Serve lunch.
(18.12) Does Flight 207 serve lunch?
(18.13) Which flights serve lunch?

The meaning representations of these examples all contain propositions concern-
ing the serving of lunch on flights. However, they differ withrespect to the role that
these propositions are intended to serve in the settings in which they are uttered. More
specifically, the first example is intended to convey factualinformation to a listener,
the second is a request for an action, and the last two are requests for information. To
capture these differences, we will introduce a set of operators that can be applied to
FOL sentences in the same way that belief operators were used in Ch. 17. Specifically,
the operatorsDCL, IMP, YNQ, andWHQwill be applied to theFOL representations of
declaratives, imperatives, yes-no-questions, and wh-questions, respectively.

Producing meaning representations that make appropriate use of these operators
requires the right set of semantic attachments for each of the possible sentence types.
For declarative sentences, we can simply alter the basic sentence rule we have been
using as follows:

S→ NP VP {DCL(NP.sem(VP.sem))}

The normal interpretation for a representation headed by the DCL operator would be
as a factual statement to be added to the current knowledge-base.

Imperative sentences begin with a verb phrase and lack an overt subject.Because
of the missing subject, the meaning representation for the main verb phrase will con-
sist of aλ -expression with an unboundλ -variable representing this missing subject.
To deal with this, we can simplysupplya subject to theλ -expression by applying a
final λ -reduction to a dummy constant. TheIMP operator can then be applied to this
representation as in the following semantic attachment:

S→ VP {IMP(VP.sem(DummyYou))}

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 607

Applying this rule to (18.11), results in the following representation:

IMP(∃eServing(e)∧Server(e,DummyYou)∧Served(e,Lunch)

As will be discussed in Ch. 24, imperatives can be viewed as a kind of speech act.
As discussed in Ch. 12,yes-no-questionsconsist of a sentence-initial auxiliary

verb, followed by a subject noun phrase and then a verb phrase. The following seman-
tic attachment simply ignores the auxiliary, and with the exception of theYNQoperator,
constructs the same representation that would be created for the corresponding declar-
ative sentence:

S→ Aux NP VP {YNQ(VP.sem(NP.sem))}

The use of this rule with for example (18.12) produces the following representation:

YNQ(∃eServing(e)∧Server(e,Flt207)∧Served(e,Lunch))

Yes-no-questions should be thought as asking whether the propositional part of its
meaning is true or false given the knowledge currently contained in the knowledge-
base. Adopting the kind of semantics described in Ch. 17, yes-no-questions can be
answered by determining if the proposition is in the knowledge-base, or can be inferred
from it.

Unlike yes-no-questions,wh-subject-questionsask for specific information about
the subject of the sentence rather than the sentence as a whole. The following at-
tachment produces a representation that consists of the operator WHQ, the variable
corresponding to the subject of the sentence, and the body ofthe proposition:

S→ WhWord NP VP {WHQ(NP.sem.var,VP.sem(NP.sem))}

The following representation is the result of applying thisrule to example (18.13):

WHQ(x,∃e,x Serving(e)∧Server(e,x)
∧Served(e,Lunch)∧Flight(x))

Such questions can be answered by returning a set of assignments for the subject vari-
able that make the resulting proposition true with respect to the current knowledge-
base.

Finally, consider the followingwh-non-subject-question:

(18.14) How can I go from Minneapolis to Long Beach?

In examples like this, the question is not about the subject of the sentence but rather
some other argument, or some aspect of the proposition as a whole. In this case, the
representation needs to provide an indication as to what thequestion is about. The
following attachment provides this information by providing the semantics of the aux-
iliary as an argument to theWHQoperator:

DRAFT

608 Chapter 18. Computational Semantics

S→ WhWord Aux NP VP {WHQ(WhWord.sem VP.sem(NP.sem))}

The following representation would result from an application of this rule to exam-
ple (18.14):

WHQ(How,∃e Going(e)∧Goer(e,User)
∧Origin(e,Minn)∧Destination(e,LongBeach))

As we’ll see in Ch. 24, correctly answering this kind of question involves a fair amount
of domain specific reasoning. For example, the correct way toanswer example (18.14)
is to search for flights with the specified departure and arrival cities. Note, however, that
there is no mention of flights or flying in the actual question.The question-answerer,
therefore, has to apply knowledge specific to this domain to the effect that questions
about going places are really questions about flights to those places.

Finally, we should make it clear that this particular attachment is only useful for
rather simple wh-questions without missing arguments or embedded clauses. As dis-
cussed in Ch. 16, the presence of long-distance dependencies in these questions re-
quires additional mechanisms to determine exactly what is being asked about. Woods
(1977) and Alshawi (1992) provide extensive discussions ofgeneral mechanisms for
handling wh-non-subject questions.

18.5.2 Noun Phrases

As we have already seen, the meaning representations for noun phrases can be either
normalFOL terms or complex-terms. The following sections detail the semantic at-
tachments needed to produce meaning representations for some of the most frequent
kinds of English noun phrases. Unfortunately, as we will see, the syntax of English
noun phrases provides surprisingly little insight into their meaning. It is often the case
that the best we can do is provide a rather vague intermediatelevel of meaning repre-
sentation that can serve as input to further interpretationprocesses.

Compound Nominals

Compound nominals, also known as noun-noun sequences, consist of simple sequences
of nouns, as in the following examples:

(18.15) Flight schedule
(18.16) Summer flight schedule

As noted in Ch. 12, the syntactic structure of this construction can be captured by the
regular expressionNoun∗, or by the following context-free grammar rules:

Nominal → Noun

Nominal → Nominal Noun

In these constructions, the final noun in the sequence is the head of the phrase and
denotes an object that is semantically related in some unspecified way to the other

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 609

nouns that precede it in the sequence. In general, an extremely wide range of common-
sense relations can be denoted by this construction. Discerning the exact nature of
these relationships is well beyond the scope of the kind of superficial semantic analy-
sis presented in this chapter. The attachment in the following rule builds up a vague
representation that simply notes the existence of a semantic relation between the head
noun and the modifying nouns, by incrementally noting such arelation between the
head noun and each noun to its left:

Nominal→ Nominal Noun
{λx Nominal.sem(x)∧NN(Noun.sem, x)}

The relationNN is used to specify that a relation holds between the modifying
elements of a compound nominal and the headNoun. In the examples given above,
this leads to the following meaning representations:

λx.Schedule(x)∧NN(x,Flight)

λx.Schedule(x)∧NN(x,Flight)∧NN(x,Summer)

Note that this representation correctly instantiates a term representing aSchedule,
while avoiding the creation of terms representing either aFlight or Summer.

Genitive Noun Phrases

Recall from Ch. 12 that genitive noun phrases make use of complex determiners that
consist of noun phrases with possessive markers, as inAtlanta’s airport andMaha-
rani’s menu. It is quite tempting to represent the relation between these words as an
abstract kind of possession. A little introspection, however, reveals that the relation
between a city and its airport has little in common with a restaurant and its menu.
Therefore, as with compound nominals, it’s best to simply state an abstract semantic
relation between the various constituents.

NP→ComplexDet Nominal
{〈∃xNominal.sem(x)∧GN(x,ComplexDet.sem)〉}

ComplexDet→NP ’s {NP.sem}

Applying these rules toAtlanta’s airportresults in the following complex-term:

〈∃xIsa(x,Airport)∧GN(x,Atlanta)〉

Subsequent semantic interpretation would have to determine that the relation denoted
by the relationGN is actually a location.

DRAFT

610 Chapter 18. Computational Semantics

Adjective Phrases

English adjectives can be split into two major categories: pre-nominal and predicative.
These categories are exemplified by the following BERP examples:

(18.17) I don’t mind a cheap restaurant.

(18.18) This restaurant is cheap.

For the pre-nominal case, an obviousand often incorrectproposal for the semantic
attachment is illustrated in the following rules:

Nominal→ Adj Nominal
{λx Nominal.sem(x)∧ Isa(x,Adj.sem)}

Adj→ cheap {Cheap}

This solution modifies the semantics of the nominal by applying the predicate provided
by the adjective to the variable representing the nominal. For our cheap restaurant
example, this yields the following not unreasonable representation:

λx Isa(x,Restaurant)∧ Isa(x,Cheap)

This is an example of what is known asintersective semanticssince the meaningIntersective
semantics

of the phrase can be thought of as the intersection of the category stipulated by the
nominal and the category stipulated by the adjective. In this case, this amounts to the
intersection of the category of cheap things with the category of restaurants.

Unfortunately, this solution often does the wrong thing. For example, consider the
following meaning representations for the phrasessmall elephant, former friend, and
fake gun:

λx Isa(x,Elephant)∧ Isa(x,Small)

λx Isa(x,Friend)∧ Isa(x,Former)

λx Isa(x,Gun)∧ Isa(x,Fake)

Each of these representations is peculiar in some way. The first one states that this
particular elephant is a member of the general category of small things, which is prob-
ably not true. The second example is strange in two ways: it asserts that the person in
question is a friend, which is false, and it makes use of a fairly unreasonable category
of former things. Similarly, the third example asserts that the object in question is a
gun despite the fact thatfakemeans it is not one.

As with compound nominals, there is no clever solution to these problems within
the bounds of our current compositional framework. Therefore, the best approach is to
simply note the status of a specific kind of modification relation and assume that some

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 611

S

NP VP

NP VPto

VP

PP

NP

Pro Verb Prop-Noun Inf-To Verb Prep PropNoun

I told Harry to go to Maharani

Figure 18.5 Parse tree forI told Harry to go to Maharani.

further procedure with access to additional relevant knowledge can replace this vague
relation with an appropriate representation (Alshawi, 1992).

Nominal→ Adj Nominal
{λx Nominal.sem(x)∧AM(x,Ad j.sem)}

Applying this rule toa cheap restaurantresults in the following formula:

∃x Isa(x,Restaurant)∧AM(x,Cheap)

Note that even this watered-down proposal produces representations that are logi-
cally incorrect for thefakeandformerexamples. In both cases, it asserts that the objects
in question are in fact members of their stated categories. In general, the solution to
this problem has to be based on the specific semantics of the adjectives and nouns in
question. For example, the semantics offormerhas to involve some form of temporal
reasoning, whilefake requires the ability to reason about the nature of concepts and
categories.

18.5.3 Verb Phrases

The general schema for computing the semantics of verb phrases relies on the notion
of function application. In most cases, theλ -expression attached to the verb is simply
applied to the semantic attachments of the verb’s arguments. There are, however, a
number of situations that force us to depart somewhat from this general pattern.

Infinitive Verb Phrases

A fair number of English verbs take some form of verb phrase asone of their argu-
ments. This complicates the normal verb phrase semantic schema since these argu-
ment verb phrases interact with the other arguments of the head verb in ways that are
not completely obvious.

Consider the following example:

DRAFT

612 Chapter 18. Computational Semantics

(18.19) I told Harry to go to Maharani.

The meaning representation for this example should be something like the following:

∃e, f ,x Isa(e,Telling)∧ Isa(f ,Going)
∧Teller(e,Speaker)∧Tellee(e,Harry)∧ToldThing(e, f)
∧Goer(f ,Harry)∧Destination(f ,x)

There are two interesting things to note about this meaning representation: the first
is that it consists of two events, and the second is that one ofthe participants,Harry,
plays a role in both of the two events. The difficulty in creating this complex represen-
tation falls to the verb phrase dominating the verbtell which will need something like
the following as its semantic attachment:

λx,y λz∃e Isa(e,Telling)
∧Teller(e,z)∧Tellee(e,x)∧ToldT hing(e,y)

Semantically, we can interpret this subcategorization frame forTell as providing three
semantic roles: a person doing the telling, a recipient of the telling, and the proposition
being conveyed.

The difficult part of this example involves getting the meaning representation for
the main verb phrase correct. As shown in Figure 18.5,Harry plays the role of both
theTelleeof theTelling event and theGoer of theGoingevent. However,Harry is
not available when theGoingevent is created within the infinitive verb phrase.

Although there are several possible solutions to this problem, it is usually best to
stick with a uniform approach to these problems. Therefore,we will start by simply
applying the semantics of the verb to the semantics of the other arguments of the verb
as follows:

VP → Verb NP VPto {Verb.sem(NP.sem, VPto.sem)}

Since theto in the infinitive verb phrase construction does not contribute to its
meaning, we simply copy the meaning of the child verb phrase up to the infinitive verb
phrase. Recall, that we are relying on the unseen feature structures to ensure that only
the correct verb phrases can be used with this construction.

VPto→ to VP {VP.sem}

In this solution, the verb’s semantic attachment has two tasks: incorporating the
NP.sem, theGoer, into theVPto.sem, and incorporating theGoingevent as theToldThing
of theTelling. The following attachment performs both tasks:

Verb→ tell
{λx,y

λz
∃e,y.variable Isa(e,Telling)

∧Teller(e,z)∧Tellee(e,x)
∧ToldThing(e,y.variable)∧y(x)

DRAFT

Section 18.5. Semantic Attachments for a Fragment of English 613

In this approach, theλ -variablex plays the role of theTelleeof the telling and the
argument to the semantics of the infinitive, which is now contained as aλ -expression
in the variabley. The expressiony(x) represents aλ -reduction that insertsHarry into
theGoingevent as theGoer. The notationy.variable, is analogous to the notation used
for complex-term variables, and gives us access to the eventvariable representing the
Goingevent within the infinitive’s meaning representation.

Note that this approach plays fast and loose with the definition of λ -reduction, in
that it allowsλ -expressions to be passed as arguments to otherλ -expressions, when
technically onlyFOL terms can serve that role. This technique is a convenience similar
to the use of complex-terms in that it allows us to temporarily treat complex expressions
as terms during the creation of meaning representations.

18.5.4 Prepositional Phrases

At a fairly abstract level, prepositional phrases serve twodistinct functions: they assert
binary relations between their heads and the constituents to which they are attached,
and they signal arguments to constituents that have an argument structure. These two
functions argue for two distinct types of prepositional phrases that differ based on their
semantic attachments. We will consider three places in the grammar where preposi-
tional phrases serve these roles: modifiers of noun phrases,modifiers of verb phrases,
and arguments to verb phrases.

Nominal Modifier Prepositional Phrases

Modifier prepositional phrases denote a binary relation between the concept being
modified, which is external to the prepositional phrase, andthe head of the preposi-
tional phrase. Consider the following example and its associated meaning representa-
tion:

(18.20) A restaurant on Broadway.

∃x Isa(x,Restaurant)∧On(x,Pearl)

The relevant grammar rules that govern this example are the following:

NP→Det Nominal

Nominal→Nominal PP

PP→ P NP

Proceeding in a bottom-up fashion, the semantic attachmentfor this kind of rela-
tional preposition should provide a two-place predicate with its arguments distributed
over twoλ -expressions, as in the following:

P → on {λyλx On(x,y)}

With this kind of arrangement, the first argument to the predicate is provided by the
head of prepositional phrase and the second is provided by the constituent that the

DRAFT

614 Chapter 18. Computational Semantics

prepositional phrase is ultimately attached to. The following semantic attachment pro-
vides the first part:

PP → P NP {P.sem(NP.sem)}

This λ -application results in a newλ -expression where the remaining argument is the
innerλ -variable.

This remaining argument can be incorporated using the following nominal con-
struction:

Nominal→ Nominal PP {λzNominal.sem(z)∧PP.sem(z)}

Verb Phrase Modifier Prepositional Phrases

The general approach to modifying verb phrases is similar tothat of modifying nomi-
nals. The differences lie in the details of the modification in the verb phrase rule; the
attachments for the preposition and prepositional phrase rules are unchanged. Let’s
consider the phraseate dinner in a hurrywhich is governed by the following verb
phrase rule:

VP → VP PP

The meaning representation of the verb phrase constituent in this construction,ate
dinner, is aλ -expression where theλ -variable represents the as yet unseen subject.

λx∃e Isa(e,Eating)∧Eater(e,x)∧Eaten(e,Dinner)

The representation of the prepositional phrase is also aλ -expression where the
λ -variable is the second argument in thePPsemantics.

λx In(x,< ∃h Hurry(h) >)

The correct representation for the modified verb phrase should contain the conjunc-
tion of these two representations with theEatingevent variable filling the first argu-
ment slot of theIn expression. In addition, this modified representation mustremain
a λ -expression with the unboundEatervariable as the newλ -variable. The following
attachment expression fulfills all of these requirements:

VP→ VP PP {λyVP.sem(y)∧PP.sem(VP.sem.variable)}

There are two aspects of this attachment that require some elaboration. The first
involves the application of the constituent verb phrases’λ -expression to the variabley.
Binding the lowerλ -expression’s variable to a new variable allows us tolift the lower
variable to the level of the newly createdλ -expression. The result of this technique is
a newλ -expression with a variable that, in effect, plays the same role as the original
variable in the lower expression. In this case, this allows aλ -expression to be modified
during the analysis process before the argument to the expression is actually available.

DRAFT

Section 18.6. Integrating Semantics into the Earley Parser615

The second notable aspect of this attachment involves theVP.sem.variable nota-
tion. This notation is used to access the event-variable representing the underlying
meaning of the verb phrase, in this case,e. This is analogous to the notation used to
provide access to the various parts of complex-terms introduced earlier.

Applying this attachment to the current example yields the following representa-
tion, which is suitable for combination with a subsequent subject noun phrase:

λy∃e Isa(e,Eating)∧Eater(e,y)∧Eaten(e,Dinner)
∧In(e,< ∃hHurry(h) >)

Verb Argument Prepositional Phrases

The prepositional phrases in this category serve to signal the role an argument plays in
some larger event structure. As such, the preposition itself does not actually modify
the meaning of the noun phrase. Consider the following example of role signaling
prepositional phrases:

(18.21) I need to go from Boston to Dallas.

In examples like this, the arguments ofgoare expressed as prepositional phrases. How-
ever, the meaning representations of these phrases should consist solely of the unaltered
representation of their head nouns. To handle this, argument prepositional phrases are
treated in the same way that non-branching grammatical rules are; the semantic attach-
ment of the noun phrase is copied unchanged to the semantics of the larger phrase.

PP → P NP {NP.sem}

The verb phrase can then assign this meaning representationto the appropriate event
role. A more complete account of how these argument bearing prepositional phrases
map to underlying event roles will be presented in Ch. 19.

18.6 Integrating Semantics into the Earley Parser

In Section 18.1, we suggested a simple pipeline architecture for a semantic analyzer
where the results of a complete syntactic parse are passed toa semantic analyzer. The
motivation for this notion stems from the fact that the compositional approach requires
the syntactic parse before it can proceed. It is, however, also possible to perform se-
mantic analysis in parallel with syntactic processing. This is possible because in our
compositional framework, the meaning representation for aconstituent can be created
as soon as all of its constituent parts are present. This section describes just such an
approach to integrating semantic analysis into the Earley parser from Ch. 13.

The integration of semantic analysis into an Earley parser is straightforward and
follows precisely the same lines as the integration of unification into the algorithm
given in Ch. 16. Three modifications are required to the original algorithm:

1. The rules of the grammar are given a new field to contain their semantic attach-
ments.

DRAFT

616 Chapter 18. Computational Semantics

2. The states in the chart are given a new field to hold the meaning representation
of the constituent.

3. The ENQUEUE function is altered so that when a complete state is entered into
the chart its semantics are computed and stored in the state’s semantic field.

procedure ENQUEUE(state, chart-entry)
if INCOMPLETE?(state) then

if stateis not already inchart-entrythen
PUSH(state, chart-entry)

else ifUNIFY-STATE(state) succeedsthen
if APPLY-SEMANTICS(state) succeedsthen

if stateis not already inchart-entrythen
PUSH(state, chart-entry)

procedure APPLY-SEMANTICS(state)
meaning-rep←APPLY(state.semantic-attachment,state)
if meaning-repdoes not equalfailure then

state.meaning-rep←meaning-rep

Figure 18.6 The ENQUEUE function modified to handle semantics. If the state is complete
and unification succeeds then ENQUEUE calls APPLY-SEMANTICS to compute and store the
meaning representation of completed states.

Figure 18.6 shows ENQUEUE modified to create meaning representations. When
ENQUEUE is passed a complete state that can successfully unify its unification con-
straints it calls APPLY-SEMANTICS to compute and store the meaning representation
for this state. Note the importance of performing feature-structure unification prior to
semantic analysis. This ensures that semantic analysis will be performed only on valid
trees and that features needed for semantic analysis will bepresent.

The primary advantage of this integrated approach over the pipeline approach lies in
the fact that APPLY-SEMANTICS can fail in a manner similar to the way that unification
can fail. If a semantic ill-formedness is found in the meaning representation being
created, the corresponding state can be blocked from entering the chart. In this way,
semantic considerations can be brought to bear during syntactic processing. Ch. 19
describes in some detail the various ways that this notion ofill-formedness can be
realized.

Unfortunately, this also illustrates one of the primary disadvantages of integrating
semantics directly into the parser—considerable effort may be spent on the semantic
analysis oforphanconstituents that do not in the end contribute to a successful parse.
The question of whether the gains made by bringing semanticsto bear early in the
process outweigh the costs involved in performing extraneous semantic processing can
only be answered on a case-by-case basis.

DRAFT

Section 18.7. Idioms and Compositionality 617

18.7 Idioms and Compositionality

Ce corps qui s’appelait et qui s’appelle encore le saint empire romain
n’était en aucune manière ni saint, ni romain, ni empire.

This body, which called itself and still calls itself the Holy Roman Em-
pire, was neither Holy, nor Roman, nor an Empire.

Voltaire2, 1756

As innocuous as it seems, the principle of compositionalityruns into trouble fairly
quickly when real language is examined. There are many caseswhere the meaning of
a constituent is not based on the meaning of its parts, at least not in the straightforward
compositional sense. Consider the following WSJ examples:

(18.22) Coupons are just the tip of the iceberg.
(18.23) The SEC’s allegations are only the tip of the iceberg.
(18.24) Coronary bypass surgery, hip replacement and intensive-care units are but

the tip of the iceberg.

The phrasethe tip of the icebergin each of these examples clearly doesn’t have much to
do with tips or icebergs. Instead, it roughly means something like the beginning. The
most straightforward way to handle idiomatic constructions like these is to introduce
new grammar rules specifically designed to handle them. These idiomatic rules mix
lexical items with grammatical constituents, and introduce semantic content that is
not derived from any of its parts. Consider the following rule as an example of this
approach:

NP → the tip of the iceberg
{Beginning}

The lower case items on the right-hand side of this rule are intended to represent
precisely words in the input. Although, the constantBeginningshould not be taken
too seriously as a meaning representation for this idiom, itdoes illustrate the idea that
the meaning of this idiom is not based on the meaning of any of its parts. Note that
an Earley-style analyzer with this rule will now produce twoparses when this phrase
is encountered: one representing the idiom and one representing the compositional
meaning.

As with the rest of the grammar, it may take a few tries to get these rules right.
Consider the followingicebergexamples from the WSJ corpus:

(18.25) And that’s but the tip of Mrs. Ford’s iceberg.
(18.26) These comments describe only the tip of a 1,000-page iceberg.
(18.27) The 10 employees represent the merest tip of the iceberg.

The rule given above is clearly not general enough to handle these cases. These ex-
amples indicate that there is a vestigial syntactic structure to this idiom that permits

2 Essai sur les moeurs et les esprit des nations.Translation by Y. Sills, as quoted in Sills and Merton (1991).

DRAFT

618 Chapter 18. Computational Semantics

some variation in the determiners used, and also permits some adjectival modification
of both theicebergand thetip. A more promising rule would be something like the
following:

NP → TipNP of IcebergNP
{Beginning}

Here the categoriesTipNP and IcebergNPcan be given an internal nominal-like
structure that permits some adjectival modification and some variation in the determin-
ers, while still restricting the heads of these noun phrasesto the lexical itemstip and
iceberg. Note that this syntactic solution ignores the thorny issuethat the modifiers
mereand1000-pageseem to indicate that both thetip and icebergmay in fact play
some compositional role in the meaning of the idiom. We will return to this topic in
Ch. 19, when we take up the issue of metaphor.

To summarize, handling idioms requires at least the following changes to the gen-
eral compositional framework:

• Allow the mixing of lexical items with traditional grammatical constituents.
• Allow the creation of additional idiom-specific constituents needed to handle the

correct range of productivity of the idiom.
• Permit semantic attachments that introduce logical terms and predicates that are

not related to any of the constituents of the rule.

This discussion is obviously only the tip of an enormous iceberg. Idioms are far
more frequent and far more productive than is generally recognized and pose serious
difficulties for many applications, including, as we will see in Ch. 25, machine transla-
tion.

18.8 Summary

This chapter explores the notion of syntax-driven semanticanalysis. Among the high-
lights of this chapter are the following topics:

• Semantic analysisis the process whereby meaning representations are created
and assigned to linguistic inputs.
• Semantic analyzersthat make use of static knowledge from the lexicon and

grammar can create context-independent literal, or conventional, meanings.
• ThePrinciple of Compositionality states that the meaning of a sentence can be

composed from the meanings of its parts.
• In Syntax-driven semantic analysis, the parts are the syntactic constituents of

an input.
• Compositional creation ofFOL formulas is possible with a few notational exten-

sions includingλ -expressionsandcomplex-terms.
• Compositional creation ofFOL formulas is also possible using the mechanisms

provided by feature structures and unification.

DRAFT

Section 18.8. Summary 619

• Natural language quantifiers introduce a kind of ambiguity that is difficult to
handle compositionally. Complex-terms can be used to compactly encode this
ambiguity.

• Idiomatic language defies the principle of compositionality but can easily be
handled by adapting the techniques used to design grammar rules and their se-
mantic attachments.

Bibliographical and Historical Notes
As noted earlier, the principle of compositionality is traditionally attributed to Frege;
Janssen (1997) discusses this attribution. Using the categorial grammar framework
described in Ch. 12, Montague (1973) demonstrated that a compositional approach
could be systematically applied to an interesting fragmentof natural language. The
rule-to-rule hypothesis was first articulated by Bach (1976). On the computational side
of things, Woods’s LUNAR system (Woods, 1977) was based on a pipelined syntax-
first compositional analysis. Schubert and Pelletier (1982) developed an incremental
rule-to-rule system based on Gazdar’s GPSG approach (Gazdar, 1981, 1982; Gazdar
et al., 1985). Main and Benson (1983) extended Montague’s approach to the domain
of question-answering.

In one of the all-too-frequent cases of parallel development, researchers in pro-
gramming languages developed essentially identical compositional techniques to aid in
the design of compilers. Specifically, Knuth (1968) introduced the notion of attribute
grammars that associate semantic structures with syntactic structures in a one-to-one
correspondence. As a consequence, the style of semantic attachments used in this
chapter will be familiar to users of the YACC-style (Johnsonand Lesk, 1978) compiler
tools.

Semantic Grammars are due to Burton (Brown and Burton, 1975). Similar notions
developed around the same time included Pragmatic Grammars(Woods, 1977) and
Performance Grammars (Robinson, 1975). All centered around the notion of reshaping
syntactic grammars to serve the needs of semantic processing. It is safe to say that
most modern systems developed for use in limited domains make use of some form of
semantic grammar.

Most of the techniques used in the fragment of English presented in Section 18.5
are adapted from SRI’s Core Language Engine (Alshawi, 1992). Additional bits and
pieces were adapted from Woods (1977), Schubert and Pelletier (1982), and Gazdar
et al. (1985). Of necessity, a large number of important topics were not covered in this
chapter. See Alshawi (1992) for the standard gap-threadingapproach to semantic in-
terpretation in the presence of long-distance dependencies. ter Meulen (1995) presents
an modern treatment of tense, aspect, and the representation of temporal information.
Extensive coverage of approaches to quantifier scoping can be found in Hobbs and
Shieber (1987) and Alshawi (1992). van Lehn (1978) presentsa set of human prefer-
ences for quantifier scoping. Over the years, a considerableamount of effort has been
directed toward the interpretation of compound nominals. Linguistic research on this

DRAFT

620 Chapter 18. Computational Semantics

topic can be found in Lees (1970), Downing (1977), Levi (1978), and Ryder (1994),
more computational approaches are described in Gershman (1977), Finin (1980), Mc-
Donald (1982), Pierre (1984), Arens et al. (1987), Wu (1992), Vanderwende (1994),
and Lauer (1995).

There is a long and extensive literature on idioms. Fillmoreet al. (1988) describe a
general grammatical framework called Construction Grammar that places idioms at the
center of its underlying theory. Makkai (1972) presents an extensive linguistic analysis
of many English idioms. Hundreds of idiom dictionaries for second-language learners
are also available. On the computational side, Becker (1975) was among the first to
suggest the use of phrasal rules in parsers. Wilensky and Arens (1980) were among
the first to successfully make use of this notion in theirPHRAN system. Zernik (1987)
demonstrated a system that could learn such phrasal idioms in context. A collection of
papers on computational approaches to idioms appeared in (Fass et al., 1992).

Finally, we have skipped an entire branch of semantic analysis in which expecta-
tions driven from deep meaning representations drive the analysis process. Such sys-
tems avoid the direct representation and use of syntax, rarely making use of anything
resembling a parse tree. Some of the earliest and most successful efforts along these
lines were developed by Simmons (1973, 1978, 1983) and (Wilks, 1975a, 1975c). A
series of similar approaches were developed by Roger Schankand his students (Ries-
beck, 1975; Birnbaum and Selfridge, 1981; Riesbeck, 1986).In these approaches, the
semantic analysis process is guided by detailed proceduresassociated with individual
lexical items. TheCIRCUS information extraction system (Lehnert et al., 1991) traces
its roots to these systems.

Exercises
18.1 The attachment given on page 609 for handling noun phrases with complex de-

terminers is not general enough to handle most possessive noun phrases. Specif-
ically, it doesn’t work for phrases like the following:

a. My sister’s flight
b. My fiance’s mother’s flight

Create a new set of semantic attachments to handle cases likethese.

18.2 Develop a set of grammar rules and semantic attachments to handle predicate
adjectives such as the one following:

a. Flight 308 from New York is expensive.
b. Murphy’s restaurant is cheap.

18.3 None of the attachments given in this chapter provide temporal information.
Augment a small number of the most basic rules to add temporalinformation
along the lines sketched in Ch. 17. Use your rules to create meaning representa-
tions for the following examples:

a. Flight 299 departed at 9 o’clock.

DRAFT

Section 18.8. Summary 621

b. Flight 208 will arrive at 3 o’clock.
c. Flight 1405 will arrive late.

18.4 As noted in Ch. 17, the present tense in English can be used to refer to either the
present or the future. However, it can also be used to expresshabitual behavior,
as in the following:

a. Flight 208 leaves at 3 o’clock.

This could be a simple statement about today’s Flight 208, oralternatively it
might state that this flight leaves at 3 o’clock every day. Create aFOL mean-
ing representation along with appropriate semantic attachments for this habitual
sense.

18.5 Implement an Earley-style semantic analyzer based on the discussion on page
615.

18.6 It has been claimed that it is not necessary to explicitly list the semantic attach-
ment for most grammar rules. Instead, the semantic attachment for a rule should
be inferable from the semantic types of the rule’s constituents. For example, if a
rule has two constituents, where one is a single argumentλ -expression and the
other is a constant, then the semantic attachment should obviously apply theλ -
expression to the constant. Given the attachments presented in this chapter, does
this type-driven semanticsseem like a reasonable idea?

18.7 Add a simple type-driven semantics mechanism to the Earley analyzer you im-
plemented for Exercise 5.

18.8 Using a phrasal search on your favorite Web search engine, collect a small corpus
of the tip of the icebergexamples. Be certain that you search for an appropriate
range of examples (i.e., don’t just search for “the tip of theiceberg”.) Analyze
these examples and come up with a set of grammar rules that correctly accounts
for them.

18.9 Collect a similar corpus of examples for the idiommiss the boat. Analyze these
examples and come up with a set of grammar rules that correctly accounts for
them.

18.10 There are now a fair number of Web-based natural language question answering
services that purport to provide answers to questions on a wide range of topics
(see the book’s Web page for pointers to current services). Develop a corpus of
questions for some general domain of interest and use it to evaluate one or more
of these services. Report your results. What difficulties did you encounter in
applying the standard evaluation techniques to this task?

DRAFT

	PART IV: Semantics and Pragmatics
	18 Computational Semantics

